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S1 ORGANIZATION
The goal of this document is to provide further discussion on topics
that supplement our primary exposition in the main paper. More
precisely, we look into the following topics in more detail:

• An exposition on prior work on unbiased estimation of func-
tions of expectations in Section S2.

• A primer on approximating functions using polynomial fits.
While most prior work focuses on Taylor series expansion,
we provide a concrete toolkit for calculating other polynomial
fits for (potentially non-analytic) functions in Section S3.

• A proof of unbiasedness of a standard polynomial estimator
where the individual samples do not necessarily need to be
independent in Section S4.

• Experimental setup for renders shown in the results section
of our main paper in Section S5.

S2 PRIOR WORK ON UNBIASED ESTIMATION OF
FUNCTIONS OF EXPECTATION

Several prior works in statistics and computer graphics have pro-
posed unbiased estimators for several classes of functions of ex-
pectation, namely affine, polynomial, exponential, and reciprocal
functions. Let us briefly review the concepts and estimators intro-
duced by these prior works.

S2.1 Affine

𝑔𝜃 (𝐼 ) = 𝑎1𝐼 + 𝑎0 (S1)

For affine style functions 𝑔𝜃 , constructing a group-unbiased esti-
mator is straight-forward,

𝑎1𝐼 + 𝑎0 = 𝑎1E[⟨𝐼 ⟩] + 𝑎0 = E[𝑎1⟨𝐼 ⟩ + 𝑎0] , (S2)

where any unbiased estimator ⟨𝐼 ⟩ will suffice,

⟨𝐼 ⟩ = 𝑓 (x)
𝑝 (x) , (S3)
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giving us the freedom to choose a single-sample or multi-sample
MC estimator, or even more advanced estimators like multiple im-
portance sampling (MIS) [Veach 1997]. Here 𝑓 is the integrand of
the integral 𝐼 . As was noted in Section 3, physically-based rendering
can be represented by an affine identity style function 𝑔𝜃 where
𝑎0 = 0 and 𝑎1 = 1.

S2.2 Polynomial

𝑔𝜃 (𝐼 ) =
𝐾∑
𝑘=0

𝑎𝑘 𝐼
𝑘 (S4)

We can construct an unbiased estimator for a polynomial of ex-
pectation (S4) by making an unbiased estimate of each term 𝑎𝑘 𝐼

𝑘

and taking their sum,

𝐾∑
𝑘=0

𝑎𝑘 𝐼
𝑘 =

𝐾∑
𝑘=0

𝑎𝑘E
[
⟨𝐼𝑘 ⟩

]
= E

[
𝐾∑
𝑘=0

𝑎𝑘 ⟨𝐼𝑘 ⟩
]
, (S5)

where each term ⟨𝐼𝑘 ⟩ can be estimated in an unbiased manner by
drawing 𝑘 samples x𝑖 and taking their product,

⟨𝐼𝑘 ⟩naive =
𝑓 (x1) · · · 𝑓 (x𝑘 )
𝑝 (x1, . . . , x𝑘 )

, (S6)

whichwewill refer to as the naive estimator. The samples x𝑖 need not
be independent so long as their joint probability density𝑝 (x1, . . . , x𝑘 )
is covering (i.e. it has a non-zero density for all combinations of
x1, . . . , x𝑘 with a non-zero product, see Section S4 for proof).

Variance-minimal estimator. Lee et al. [2019] and Kettunen et al.
[2021] propose a variance-minimal estimator based on U-statistics
[Lee 1990]. The key concept is to allocate the sampling budget of
multiple high-variance naive estimates (S6) to a single low-variance
estimate. Drawing a larger number 𝑛 of samples x𝑖 than the min-
imal number 𝑘 required for a single estimate, we can construct a
combinatorial

(𝑛
𝑘

)
= 𝑛!

(𝑛−𝑘)!𝑘! number of symmetric estimates. Their
resulting mean is both order-invariant and variance minimal [Hal-
mos 1946]. Exploiting the symmetry of the estimates, Kettunen
et al. [2021] propose a quadratic time recurrence relation based on
Girard-Newton formulas, for which we present a simplified form1,

𝑠𝑘,𝑛 = 𝑠𝑘,𝑛−1 + 𝑠𝑘−1,𝑛−1 ·
𝑓 (x𝑘 )
𝑝 (x𝑘 )

, (S7)

1The original form presented by Kettunen et al. [2021] is more numerically stable and
we strongly recommend using their form in practice.
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where 𝑠𝑘,0 = 0 and 𝑠0,𝑛 = 1. The resulting variance minimal estima-
tor for a single term is then,

⟨𝐼𝑘 ⟩min =

(
𝑛

𝑘

)−1 ∑
𝐽 ⊂ {1, . . . , 𝑛}

| 𝐽 | = 𝑘

∏
𝑗 ∈𝐽

𝑓 (x𝑗 )
𝑝 (x𝑗 )

=

(
𝑛

𝑘

)−1
𝑠𝑘,𝑛 . (S8)

Kettunen et al. [2021] additionally propose a strategy of replacing
the single-sample MC estimates 𝑓 (𝑥)/𝑝 (𝑥) with multi-sample MC
estimates ⟨𝐼 ⟩m = 1

𝑚

∑𝑚
𝑗=1

𝑓 (𝑥 𝑗 )
𝑝 (𝑥 𝑗 ) , and use stratified sampling (in

particular, a discrete comb) to further improve convergence rate.

Multi-term polynomials. When computing a polynomial of mul-
tiple terms we can reuse the same set of samples to estimate each
term. For the variance-minimal estimator (S8), the cost of computing
the lower order terms is fully amortized by computing the highest
order term. In other words, the estimates of lower degree terms are
computed as a by-product of estimating the highest degree term.

S2.3 Power series

𝑔𝜃 (𝐼 ) ↔ ℎ𝜃 (𝐼 ) =
∞∑
𝑘=0

𝑎𝑘 (𝐼 − 𝑏)𝑘 (S9)

For an analytic style function𝑔𝜃 we can construct a group-unbiased
estimator from its Taylor series expansion ℎ𝜃 around an expansion
point 𝑏,

ℎ𝜃 (𝐼 ) =
∞∑
𝑘=0

𝑔
(𝑘)
𝜃

(𝑏)
𝑘!
=𝑎𝑘

(𝐼 − 𝑏)𝑘 , (S10)

where 𝑔 (𝑘)
𝜃

(𝑏) is the 𝑘th derivative of 𝑔𝜃 evaluated at the expansion
point 𝑏. One reasonable choice for the expansion point 𝑏 is an
estimate ⟨𝐼 ⟩ of the integral 𝐼 .
To construct a practical estimator for a power series like in

Eq. (S10) we will need to select a finite number of terms to evaluate
while still maintaining the unbiasedness of the estimator. Georgiev
et al. [2019] discuss three strategies to do so: single-term, iterative
prefix-sum, and recursive prefix-sum.

Single-term. The single-term estimator selects a single, 𝑘th term
of the series with some probability 𝑃 (𝑘),

⟨ℎ𝜃 (𝐼 )⟩single =
𝑔
(𝑘)
𝜃

(𝑏)
𝑘!

⟨(𝐼 − 𝑏)𝑘 ⟩
𝑃 (𝑘) . (S11)

Iterative prefix-sum. In contrast, the prefix-sum estimators select
the first 𝑛 terms of the series. The iterative prefix-sum estimator
selects 𝑛 with some probability 𝑃 (𝑛) and weights each of the first 𝑛
terms by the probability 𝑃 (𝑘 < 𝑛) that their index 𝑘 is less than 𝑛,

⟨ℎ𝜃 (𝐼 )⟩iter =
𝑛−1∑
𝑘=0

𝑔
(𝑘)
𝜃

(𝑏)
𝑘!

⟨(𝐼 − 𝑏)𝑘 ⟩
𝑃 (𝑘 < 𝑛) . (S12)

Recursive prefix-sum. The recursive prefix-sum estimator per-
forms a Russian roulette-like process where each next term is ac-
cepted with some probability 𝑃 (𝑘), else the series is terminated.
The resulting probability of selecting the 𝑘th term is the product
of accepting all lower index terms,

∏𝑘
𝑘′=0 𝑃 (𝑘

′), and the highest
degree term 𝑛 is not chosen explicitly, but is a by-product of the
process,

⟨ℎ𝜃 (𝐼 ) ⟩recur =
𝑛−1∑
𝑘=0

𝑔
(𝑘 )
𝜃

(𝑏)
𝑘!

⟨(𝐼 − 𝑏)𝑘 ⟩
𝑘∏

𝑘′=0
𝑃 (𝑘′)

. (S13)

Estimating the selected terms. Each of the selected estimate terms
⟨(𝐼 − 𝑏)𝑘 ⟩ of the finite-term polynomial estimators in Eqs. (S11)
to (S13) can then be robustly estimated using the naive (S6) or
variance-minimal (S8) estimators discussed in Section S2.2.

S2.4 Exponential

𝑔𝜃 (𝐼 ) = 𝑎𝐼 (S14)

For exponentials of expectation we can apply the strategy of
Section S2.3 and construct a group-unbiased estimator from its
Taylor series expansion (S10),

⟨𝑎𝐼 ⟩ =
∞∑
𝑘=0

ln(𝑎)𝑘𝑎𝑏
𝑘! ⟨(𝐼 − 𝑏)𝑘 ⟩ , (S15)

for which we can select a finite number of terms using some strategy
(e.g. as in Eqs. (S11) to (S13)), and estimate the terms using a known
polynomial term estimator (e.g. as in Eqs. (S6) and (S8)).

S2.5 Reciprocal

𝑔𝜃 (𝐼 ) =
𝑎

𝐼
(S16)

Similarly to exponential style functions (S14), we can expand
a reciprocal function into its Taylor series and construct a group-
unbiased estimator for each of its terms,〈𝑎

𝐼

〉
=

∞∑
𝑘=0

𝑎𝑏−𝑘−1⟨(𝑏 − 𝐼 )𝑘 ⟩ , (S17)

which is valid when the integral 𝐼 ≠ 0, and for which we can, once
again, select a finite number of terms using one of the strategies in
Eqs. (S11) to (S13), and estimate them using Eqs. (S6) and (S8).

S2.6 Other power series

𝑔𝜃 (𝐼 ) ↔ ℎ𝜃 (𝐼 ) =
∞∑
𝑘=0

𝑎𝑘 (𝐼 − 𝑏)𝑘 (S18)
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One notices that the majority of the current work on power series
estimators for functions of expectations focus on Taylor expan-
sion. However, Taylor expansion is fundamentally a local procedure,
and only accurately predicts function behavior around the point of
expansion 𝑏. Hence, in cases where the style function 𝑔𝜃 under con-
sideration has discontinuities, or otherwise fundamentally changes
shape in different parts of the domain, Taylor expansion is unable
to provide an accurate representation. Other popular power series
methods such as Lagrange interpolation and Hermite interpolation
suffer from similar limitations of being unstable, or intractable for
functions that are not sufficiently smooth. This fundamental limi-
tation of these power series leads us to investigate other ways of
representing analytic functions using power series.
For brevity, we limit discussion to real-valued style functions

𝑔𝜃 : R→ R, since extension to vector-valued 𝑔𝜃 under component-
separability is straightforward, and denote the vector space of all
analytic functions as F , with usual notions of function addition and
scalar multiplication.

Polynomial bases. Technically, the Taylor expansion of a style
function 𝑔𝜃 around a point 𝑥 = 𝑏 is an infinite expansion of 𝑔𝜃 in the
function spaceF with basis {1, (𝑥−𝑏), (𝑥−𝑏)2, . . .}, with coefficients
𝑎𝑘 = 𝑔

(𝑘)
𝜃

(𝑏)/𝑘!. As an alternative to Taylor expansion of a style
function 𝑔𝜃 ∈ F , we can explore different polynomial bases T =

{𝑇0 (𝑥),𝑇1 (𝑥),𝑇2 (𝑥), . . .}. Obtaining a power series representation of
𝑔𝜃 from its basis representation,𝑔𝜃 (𝑥) =

∑∞
𝑘=0 𝑎𝑘𝑇𝑘 (𝑥), is a straight-

forward change-of-basis transformation from T to {1, (𝑥 − 𝑏), (𝑥 −
𝑏)2, . . .}, such that 𝑔𝜃 (𝑥) =

∑∞
𝑘=0 𝑎

′
𝑘
(𝑥 − 𝑏)𝑘 .

Orthogonality. Further, one can equip the function space F with
an inner-product ⊙, and if the polynomials𝑇𝑛 (𝑥) are chosen so that
they satisfy orthogonality,

𝑇𝑚 (𝑥) ⊙ 𝑇𝑛 (𝑥) = 𝐶 (𝑚)𝛿𝑚𝑛 , (S19)

for some𝐶 (𝑚) ≠ 0, and 𝛿𝑚𝑛 denotes the Dirac Delta, where 𝛿𝑚𝑛 = 0
if𝑚 ≠ 𝑛 and 1 otherwise, then we can calculate the coefficients 𝑎𝑛 ,

𝑎𝑛 = 𝑇𝑛 (𝑥) ⊙ 𝑔𝜃 (𝑥) . (S20)

Many such orthogonal bases 𝑇 are used in the literature, and below
we discuss a few popular choices.

Chebyshev Polynomials. This basis is given by 𝑇0 (𝑥) = 1, 𝑇1 (𝑥) =
𝑥 , and

𝑇𝑛+1 (𝑥) = 2𝑛𝑇𝑛 (𝑥) −𝑇𝑛−1 (𝑥) . (S21)

It is known that under the inner product 𝑓1 ⊙ 𝑓2 =
∫ 1
−1

𝑓1 (𝑥) 𝑓2 (𝑥)√
1−𝑥2 d𝑥 ,

𝑇 = {𝑇0 (𝑥),𝑇1 (𝑥),𝑇2 (𝑥) . . .} forms an orthogonal basis. In particular,∫ 1
−1𝑇𝑚 (𝑥)𝑇𝑛 (𝑥)d𝑥 = 𝐶 (𝑚)𝛿𝑚𝑛 , where 𝐶 (0) = 𝜋 and 𝐶 (𝑖) = 𝜋

2 for
every 𝑖 ≥ 1. This relation lets us compute the coefficients for the
power series representation of any analytic 𝑓 : [−1, 1] → R by,

𝑎𝑛 =

∫ 1

−1

𝑔𝜃 (𝑥)𝑇𝑛 (𝑥)
𝐶 (𝑛)

√
1 − 𝑥2

d𝑥 . (S22)

Legendre Polynomials. This basis is defined by 𝑇0 (𝑥) = 1, 𝑇1 (𝑥) =
𝑥 , and the recursion formula

(𝑛 + 1)𝑇𝑛+1 (𝑥) = (2𝑛 + 1)𝑥𝑇𝑛 (𝑥) − 𝑛𝑇𝑛−1 (𝑥) . (S23)

Then, it is known that
∫ 1
−1𝑇𝑚 (𝑥)𝑇𝑛 (𝑥)d𝑥 = 1

2𝑚+1𝛿𝑚𝑛 , so 𝑇𝑚 and
𝑇𝑛 are perpendicular with respect to the inner product 𝑓1 ⊙ 𝑓2 =∫ 1
−1 𝑓1 (𝑥) 𝑓2 (𝑥)d𝑥 . Therefore, in this case, we can compute, for a
𝑔𝜃 ∈ F that has domain contained in [−1, 1],

𝑎𝑛 = (2𝑛 + 1)
∫ 1

−1
𝑔𝜃 (𝑥)𝑇𝑛 (𝑥)d𝑥 . (S24)

Bernstein Polynomials. In general, Bernstein polynomials are not
orthogonal, and show very slow convergence. While there has been
effort on converting Bernstein polynomials into an orthogonal ba-
sis via the Gram-Schmidt procedure [Bellucci 2014], expressing a
generic function in terms of Bernstein polynomials first requires us
to fix a finite degree 𝑛, and we do not get an infinite series repre-
sentation for analytic functions.
Note that due to the nature of the orthogonality condition, we

need the analytic function 𝑔𝜃 to have a domain of [−1, 1]. This can
be effectively achieved for any 𝑔𝜃 that is defined on a finite domain,
by simple shifting and scaling of the function arguments.

Estimation of coefficients. For some analytic functions 𝑓 (𝑥), the
exact evaluation of the integrals in (S24) and (S22) can be chal-
lenging. Hence in practice, one estimates these coefficients. When
the points that are taken on the real axis to sample these inte-
grals are a fixed distance apart from each other, we obtain a Rie-
mann sum. In general, if we take points 𝑥1, . . . , 𝑥𝑛 ∈ [−1, 1] to
sample the integrals, then the estimation of the coefficients 𝑎𝑛 effec-
tively calculates an approximate polynomial fit through the points
(𝑥1, 𝑔𝜃 (𝑥1)), . . . , (𝑥𝑛, 𝑔𝜃 (𝑥𝑛)). Therefore, this gives an effective way
of calculating interpolating polynomials passing through a fixed
number of points. We further discuss the idea of polynomial fitting
in Section S3.

S3 BACKGROUND ON POLYNOMIAL APPROXIMATION
OF A FUNCTION

Approximating a style function 𝑔𝜃 by an 𝑛-degree polynomial ℎ̂𝜃
boils down to finding the best 𝑎0, 𝑎1, . . . , 𝑎𝑛 , such that, 𝑔𝜃 (𝑥) ≈
ℎ̂𝜃 (𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛𝑥

𝑛 , for every 𝑥 in the domain of 𝑔𝜃 .
This is equivalent to solving an optimization problem to minimize
some measure L, e.g. L2 (𝑔𝜃 , ℎ̂𝜃 ) =

∫
𝐷
(𝑔𝜃 (𝑥) − ℎ̂𝜃 (𝑥))2d𝑥 , the

𝐿2- distance. Even if this optimization problem has a theoretical
solution, solving it directly using gradient-based or simplex-based
algorithms can be computationally expensive and has no guarantee
on convergence.
Let us now explore some polynomial fitting techniques that are

popular in scientific areas other than rendering.

Taylor Fit. A degree 𝑘 Taylor approximation around a single fit
point 𝑏 = 𝑥1 of a 𝑘 times-differentiable 𝑔𝜃 is given by

ℎ̂𝜃 (𝑥) =
𝑘∑
𝑖=0

𝑔
(𝑖)
𝜃

(𝑏)
𝑖! (𝑥 − 𝑏)𝑖 . (S25)

Bernstein Fit. For a fixed degree 𝑘 and 𝑔𝜃 : [0, 1] → R, the Bern-
stein fit requires (𝑘 + 1) equally spaced points on the interval [0, 1]
as input. So, in this case, we need 𝑥𝑖 = 𝑖/𝑘 , and the Bernstein fit for
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such a 𝑔𝜃 is given by

ℎ̂𝜃 (𝑥) =
𝑘∑
𝑖=0

𝑔𝜃 (𝑖/𝑘) ·
(
𝑘

𝑖

)
𝑥𝑖 (1 − 𝑥)𝑘−𝑖 . (S26)

Although ℎ̂𝜃 converges to 𝑔𝜃 uniformly on [0, 1], this convergence
is slow for functions with complicated shapes, making it difficult to
use in practice.

Chebyshev Fit. As before, let 𝑇0 (𝑥) = 1, 𝑇1 (𝑥) = 𝑥 and 𝑇𝑛+1 (𝑥) =
2𝑛𝑇𝑛 (𝑥) − 𝑇𝑛−1 (𝑥). For any number of fit points (𝑥1, 𝑔𝜃 (𝑥1)), . . .,
(𝑥𝑛, 𝑔𝜃 (𝑥𝑛)), we can calculate a Chebyshev fit by

ℎ̂𝜃 (𝑥) =
𝑘∑
𝑖=0

𝑎𝑖𝑇𝑖 (𝑥) , 𝑎𝑖 =
𝑛∑
𝑗=1

𝑔𝜃 (𝑥 𝑗 )𝑇𝑖 (𝑥 𝑗 )

𝐶 (𝑖)
√

1 − 𝑥2
𝑗

· (𝑥 𝑗 − 𝑥 𝑗−1) , (S27)

where 𝐶 (0) = 𝜋 and 𝐶 (𝑖) = 𝜋
2 for every 𝑖 ≥ 1, and we set 𝑥0 = −1

by convention. In practice, one can sample the fit points 𝑥𝑖 as evenly
spaced on the interval [−1, 1], or use the so-called Chebyshev nodes
𝑥 𝑗 = cos

(
2𝑗−1
2𝑛 𝜋

)
, but we have observed no perceivable difference

in our experiments. Furthermore, Chebyshev fits have the useful
property that for real-valued analytic functions, the error in the fit
decays exponentially with 𝑛 [Tadmor 1986], hence making it a very
good general-purpose fit for a wide variety of functions.

Legendre Fit. Recall that the Legendre polynomials satisfy𝑇0 (𝑥) =
1, 𝑇1 (𝑥) = 𝑥 , and the recursion formula (𝑛 + 1)𝑇𝑛+1 (𝑥) = (2𝑛 +
1)𝑥𝑇𝑛 (𝑥)−𝑛𝑇𝑛−1 (𝑥). We can exactly retrace the steps for computing
a Chebyshev fit for these polynomials to compute a Legendre fit for
a function 𝑔𝜃 with domain [−1, 1] as,

ℎ̂𝜃 (𝑥) =
𝑘∑
𝑖=0

𝑎𝑖𝑇𝑖 (𝑥) , 𝑎𝑖 = (2𝑖 + 1)
𝑖∑
𝑗=1
𝑔𝜃 (𝑥 𝑗 )𝑇𝑖 (𝑥 𝑗 ) · (𝑥 𝑗 −𝑥 𝑗−1) . (S28)

where we let 𝑥0 = −1. In our experiments, the error bounds and the
fit polynomials calculated by the Legendre fit matches very closely
with Chebyshev, making them almost indistinguishable on the fit
intervals.

S4 UNBIASED ESTIMATION OF POLYNOMIALS OF
EXPECTATION

Let us formalize the conditions required for an unbiased estimator
of a polynomial of expectation. We will focus on the single-term,
n-degree polynomial case, as an unbiased multi-term estimator can
be easily constructed by taking the sum of unbiased single-term
estimators.
In integral form we have,

𝑔(𝐼 ) = 𝐼𝑛 =

(∫
X
𝑓 (𝑥)d𝑥

)𝑛
Let us reorganize the terms such that, instead of computing the
integral and raising it to the power 𝑛, we are taking the product of

𝑛 instances of the integral,

𝐼𝑛 =

(∫
X
𝑓 (𝑥)d𝑥

)𝑛
=

(∫
X
𝑓 (𝑥1)d𝑥1

)
· · ·

(∫
X
𝑓 (𝑥𝑛)d𝑥𝑛

)
=

∫
X𝑛

𝑓 (𝑥1) · · · 𝑓 (𝑥𝑛)d𝑥1 · · · d𝑥𝑛

=

∫
X𝑛

𝑛∏
𝑖=1

𝑓 (𝑥𝑖 )d𝑥1 · · · d𝑥𝑛

Given this form, let us then define a more compact notation,∫
X𝑛

𝑛∏
𝑖=1

𝑓 (𝑥𝑖 )d𝑥1 · · · d𝑥𝑛 =

∫
X𝑛

𝑓 (x)dx (S29)

where x = {𝑥1, · · · , 𝑥𝑛}, x ∈ X𝑛 , the integrand 𝑓 (x) = ∏𝑛
𝑖=1 𝑓 (𝑥𝑖 ),

and the measure is 𝜇 (x) = 𝜇 (𝑥1) · · · 𝜇 (𝑥𝑛).
An single-sample Monte Carlo estimator for the right-hand side

integral of Eq. (S29) is then,

⟨𝐼𝑛⟩ = 𝑓 (x)
𝑝 (x)

where the expectation of the single-sample estimator,

E
[
𝑓 (x)
𝑝 (x)

]
=

∫
X𝑛

𝑓 (x)
𝑝 (x) 𝑝 (x)dx =

∫
X𝑛

𝑓 (x)dx = 𝐼𝑛 (S30)

holds when the pdf 𝑝 (x) > 0 where-ever 𝑓 (x) ≠ 0, i.e. the sampling
process of 𝑝 (x) is covering.

As such, each of the samples x1, · · · , x𝑛 need not be sampled inde-
pendently, so long as the joint pdf 𝑝 (x) satisfies the above condition.

S5 EXPERIMENTAL SETUP FOR RESULTS IN THE MAIN
PAPER

All results were rendered on a CPU-based RGB renderer using the
sampling algorithm detailed in main document, using a single work-
station with a 24-core (8 performance, 16 efficiency) Intel i9-13900KF
and 64GB of 4800 Mhz DDR5 memory.

S5.1 Color mapping and ACP
For results in Fig. 7 we use the biased direct application estima-
tor of (19) to match the ACP method of Doi et al. [2021]. The ref-
erences were rendered with a brute-force 1024 samples per style
function evaluation. The style function uses the "first hit only"
parametrization, and is implemented as follows: First compute the
inner-estimate ⟨𝐼 ⟩ by averaging 𝑛 samples, then compute the bright-
ness 𝑢 of the estimate ⟨𝐼 ⟩, clamp 𝑢 to the minimum and maximum
range of the gradient, and finally map the clamped brightness to
a gradient value. We used a simple average of channels for the
brightness, 𝑢 = (⟨𝐼 ⟩𝑟 + ⟨𝐼 ⟩𝑔 + ⟨𝐼 ⟩𝑏 )/3.

S5.2 Cel shading and FTV
For results in Fig. 8 we use the biased direct application estimator
(19). The references were rendered with a brute-force 4096 samples
per style function evaluation. The style function uses the "first hit
only" parametrization. The style function is a global illumination (GI)
variant of cel shading that naturally preserves the color information
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of GI while still producing clear cel steps. The style is implemented
as follows: First compute the inner-estimate ⟨𝐼 ⟩ by averaging 𝑛

samples, then compute the brightness 𝑢 = (⟨𝐼 ⟩𝑟 + ⟨𝐼 ⟩𝑔 + ⟨𝐼 ⟩𝑏 )/3 of
the estimate ⟨𝐼 ⟩, determine the target brightness 𝑢 ′ using a user-
defined mapping𝑚, 𝑢 ′ =𝑚(𝑢), scale the estimate ⟨𝐼 ⟩ to the target
brightness, ⟨𝐼 ⟩′ = ⟨𝐼 ⟩𝑢 ′/𝑢. The user-defined mapping𝑚 used for
Fig. 8 is𝑚(𝑢) = 0.4 for 𝑢 < 0.75 and𝑚(𝑢) = 0.95 for 𝑢 ≥ 0.75.

S5.3 Recursive application of style functions
For the results in Fig. 9 we use the biased direct application estimator
(19). The images were rendered with 8 samples per style function
evaluation. The style functions use a "first 𝑁 hits only" parametriza-
tion, which is a variation of the "first hit only" parametrization
for recursive stylization. The style function for saturation adjust-
ment is implemented as follows: First compute the inner-estimate
⟨𝐼 ⟩ by averaging 𝑛 samples, compute the brightness 𝑢 = (⟨𝐼 ⟩𝑟 +
⟨𝐼 ⟩𝑔 + ⟨𝐼 ⟩𝑏 )/3 of the estimate ⟨𝐼 ⟩, compute the minimum satura-
tion estimate ⟨𝐼 ⟩min = ⟨𝑢,𝑢,𝑢⟩, determine the minimum channel
value 𝑐𝑚𝑖𝑛 = min(⟨𝐼 ⟩𝑟 , ⟨𝐼 ⟩𝑔 , ⟨𝐼 ⟩𝑏 ) and the maximum channel value
𝑐𝑚𝑎𝑥 = max(⟨𝐼 ⟩𝑟 , ⟨𝐼 ⟩𝑔 , ⟨𝐼 ⟩𝑏 ), compute the pre-normalized maxi-
mum saturation estimate ⟨𝐼 ⟩max = (⟨𝐼 ⟩ − 𝑐𝑚𝑖𝑛)/𝑐𝑚𝑎𝑥 , compute
the brightness of the pre-max estimate 𝑢 ′ = (⟨𝐼 ⟩max𝑟 + ⟨𝐼 ⟩max𝑔 +
⟨𝐼 ⟩max𝑏 )/3, compute the final color by using a user-defined weight
𝑤 to linearly interpolate the brightness normalized minimum and
maximum saturation values, ⟨𝐼 ⟩′ = 𝑤 ⟨𝐼 ⟩min + (1 − 𝑤)⟨𝐼 ⟩max𝑢/𝑢 ′.
We then linearly blend the exitant radiance with the maximally
saturated color using a weight of𝑤 = 0.5.

S5.4 Unbiased stylization using power series and certain
operations

For the gamma correction results in Fig. 10 we use several vari-
ants of the power series estimator in Section S2.3. The images for
these results were rendered with a variable number of samples due
to stochastic prefix length. For the combined gu-estimator results
in Fig. 10 we use the affine (S3) and naive polynomial term (S6)
estimators. The images for the combined estimator results were
rendered with 1 sample per operand style function evaluation. All
style functions in Fig. 10 use the "first hit only" parametrization. The
sepia tone is implemented as color mapping (see Section S5.1) with
an extrapolated gradient that covers the range of [0,∞). The style
function for contrast adjustment is implemented as follows: First
compute the inner-estimate ⟨𝐼 ⟩ by averaging 𝑛 samples, compute
the final color using a user-specified contrast 𝑐 factor and a pivot
value 𝑝 , ⟨𝐼 ⟩′ = 𝑐 (⟨𝐼 ⟩ − 𝑝) + 𝑝 .

S5.5 Polynomial approximation
For the polynomial approximation results Fig. 11, the tie-dye ef-
fect is implemented as cosine waves of different frequency and
phase operating on each of the RGB channels independently. We
use a Chebyshev basis up through degree 20 fit on the interval of
[−1, 4]. We choose 4 as the maximum to allow for exitant radiance
samples that exceed 1, and then further clamp any samples that
exceed the interval maximum of 4. The wave functions for each
RGB channel are: 𝑟 ′ = −𝑐𝑜𝑠 (2𝜋 (𝑟+1))+1

2 , 𝑔′ = −𝑐𝑜𝑠 (2.15𝜋 (𝑔+1.13))+1
2 ,

and 𝑏 ′ = −𝑐𝑜𝑠 (2.3𝜋 (𝑏+1.29))+1
2 respectively.

S5.6 Representing existing stylizations
For results in Fig. 12 we use the biased direct application estimator
(19). The images were rendered with a 64 samples per style function
evaluation. The style function uses the "first hit only" parametriza-
tion.

Experimental setup [Gooch et al. 1998; Barla et al. 2006]. Inter-
estingly, both stylizations have completely closed-form solutions
that we can compute with 0 samples, removing the need for the
"first hit only" parametrization. We follow the respective formu-
lations of each paper, with one exception: the "light direction" is
not well-defined in a global illumination context, so we treat it as a
user-specifiable parameter. For the results in Fig. 12 (left) we point
the "light direction" towards the center of the area lights above the
dragon.

Experimental setup for feature lines [West 2021]. For the results
in Fig. 12 (middle) we use the color mapping style function of Sec-
tion S5.1. The images were rendered with a 8 samples per style
function evaluation. The style function uses the "first hit only"
parametrization. The custom feature line stylization maps the 𝑦 po-
sition of line vertices to a gradient, such that the lines vary in color
vertically over 𝑦.

Experimental setup for cross-hatching [Deussen et al. 1999]. The
style function for cross-hatching [Deussen et al. 1999] is imple-
mented as follows: define 𝑛 sets of evenly-spaced planes tangent to
the camera’s view direction, orient each set of planes at different
angles around the view direction such that the cross product of
the normals of any two plane sets is the view direction. Each set
of planes represents one direction of hatching. At style evaluation,
compute the inner-estimate ⟨𝐼 ⟩ by averaging 𝑛 samples, followed by
the brightness 𝑢 = (⟨𝐼 ⟩𝑟 + ⟨𝐼 ⟩𝑔 + ⟨𝐼 ⟩𝑏 )/3 of the estimate ⟨𝐼 ⟩. Next,
select𝑚 ∈ {0, . . . , 𝑛} sets of planes depending on the brightness,
where𝑚 = 0 when 𝑢 is maximum, and𝑚 = 𝑛 when 𝑢 is minimum.
For these𝑚 selected sets of planes, and a user defined line thick-
ness 𝑑 , determine if the position 𝑝 of the current vertex lies within
distance 𝑑/2 of any plane, | (𝑝 − 𝑜) · 𝑛 | < 𝑑/2, where 𝑜 is a point on
a plane and 𝑛 is its unit normal. If yes, the style function returns
a user-specified line color, and otherwise returns a user-specified
background color.

Experimental setup for half-tone [Hall 1999]. The style function
for half-tone [Hall 1999] is implemented as follows: define a grid
of evenly-spaced points over 3D space with an interval width of 𝑑 .
At style evaluation, compute the inner-estimate ⟨𝐼 ⟩ by averaging
𝑛 samples, compute the brightness 𝑢 = (⟨𝐼 ⟩𝑟 + ⟨𝐼 ⟩𝑔 + ⟨𝐼 ⟩𝑏 )/3 of
the estimate ⟨𝐼 ⟩, then map 𝑢 to a radius 𝑟 for spheres centered at
each grid point. If the position 𝑝 of the current vertex is less than a
distance of 𝑟 from the nearest grid point𝑔, i.e. |𝑝−𝑔 | < 𝑟 , then return
a user-specified dark tone, and otherwise return a user-specified
light tone.
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