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Abstract

Spectral clustering is a widely used algorithm to find clusters in networks. Several researchers

have studied the stability of spectral clustering under local differential privacy with the additional

assumption that the underlying networks are generated from the stochastic block model (SBM).

However, we argue that this assumption is too restrictive since social networks do not originate from

the SBM. Thus, we delve into an analysis for general graphs in this work. Our primary focus is the

edge flipping method – a common technique for protecting local differential privacy. On a positive

side, our findings suggest that even when the edges of an n-vertex graph satisfying some reasonable

well-clustering assumptions are flipped with a probability of O(logn/n), the clustering outcomes

are largely consistent. Empirical tests further corroborate these theoretical findings. Conversely,

although clustering outcomes have been stable for dense and well-clustered graphs produced from the

SBM, we show that in general, spectral clustering may yield highly erratic results on certain dense

and well-clustered graphs when the flipping probability is ω(logn/n). This indicates that the best

privacy budget obtainable for general graphs is Θ(logn).

1 Introduction

As the demand for trustworthy artificial intelligence grows, the need to protect user privacy becomes

more crucial. Several methods have been proposed to address this concern. Among these, differential

privacy is the most common one. Differential privacy [1] measures the amount of privacy a system leaks

by using a metric called the privacy budget. This method involves corrupting users’ information, then

processing the corrupted data to obtain statistical conclusions while still maintaining privacy. Developing

algorithms that can accurately provide statistical conclusions from the corrupted information is a topic

of interest among many researchers [2].

In this work, we are interested in a variant of differential privacy called local differential privacy [3].

Unlike traditional differential privacy, local differential privacy does not allow the collection of all users’

information before it is corrupted. Instead, it requires users to corrupt their data at their local devices

before sending it to central servers. This ensures that users’ information is not leaked during transmission.

Local differential privacy is used by companies [4, 5] for their services.

We focus on algorithms for social networks. In a social network, each user is represented by a node, and

their relationships with other users are represented by edges. One technique for protecting user privacy

under the local differential privacy notion is randomized response or edge flipping [6, 7, 8]. In this

technique, before sending their adjacency vector (which represents their friend list) to the central server,

each bit in the adjacency vector is flipped with a specified probability p. We obtain a local differential

privacy with the budget of Θ(log 1/p) by the flipping.

Several algorithms [9, 10] have been proposed for processing social networks of which edges are flipped.

These include graph clustering algorithms such as [11, 12, 13]. One of the most widely used and scalable
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graph clustering algorithms – spectral clustering [14] – has also received a lot of attention in this context.

Many analyses such as [15] have been recently done for the algorithms. However, all of these analyses

assume that the input social networks are generated from the stochastic block models (SBM).

1.1 Our Contribution

We argue that assuming that the input graph is generated from the SBM is too restrictive. Thus, in this

study, we consider the robustness of spectral clustering for general graphs. In what follows, let G be an

n-vertex input graph. Our main contribution of Section 3 can be summarized by the following theorem:

Theorem 1.1. Let G′ be obtained from G via the edge flipping mechanism with probability p =

O(log n/n). Then, under some reasonable assumptions, the number of vertices misclassified by the

spectral clustering algorithm by running it on G′ instead of G is O(η(G) · n) with probability 1 − o(1),

where η(G) is a small constant.

In simpler terms, we demonstrate that:

Spectral clustering is robust against edge flipping or the randomized response

method with probability p = O(log n/n), or privacy budget ε = Ω(log n).
(1.1)

One of the results of [12] proves (1.1), assuming that the input social networks are generated from the

SBM. We make much weaker assumptions in our work. The only two assumptions we require are 1) the

social network has a sufficient cluster structure and 2) its maximum degree is sufficiently large.

We use some ideas from the proof by Peng and Yoshida [16] who have studied the sensitivity of spectral

clustering algorithms. However, their work focuses on scenarios where each edge is removed with a specific

probability. In contrast, local differential privacy not only removes edges but also adds edges to social

networks. Furthermore, the number of edges added is often much greater than those removed. Thus,

we can only incorporate their concepts in limited sections of our proof, with the core components (like

Section 3.3) being original.

The work detailed in [15] demonstrates that stable results from graphs produced by SBM are unattainable

with a privacy budget of o(log n). This suggests that having such a privacy budget for general graphs is

also implausible. Because it has been proven that a constant privacy budget can be achieved for dense,

well-clustered graphs generated by SBM [15], one might anticipate a similar outcome for general graphs.

Regrettably, in Section 4 of this paper, we present a dense, well-clustered graph where spectral clustering

results significantly shift when edges are flipped at a probability of ω(log n/n). This indicates that even

within this regime, securing a smaller privacy budget is not feasible.

Remark 1.2. For many readers, it may seem counter-intuitive that the privacy budget increases with

the number of users, given that differential privacy tends to be more effective with larger databases. This

can be explained by considering the nature of the data being protected. In relational databases or general

graph differential privacy, there are n pieces of information to protect. However, for local edge differential

privacy, the protection extends to O(n2) edge information.

Remark 1.3. Spectral clustering analysis under local differential privacy is a relatively recent area of

exploration. However, there is a substantial body of work on graph clustering with differential privacy,

as evidenced by studies like [12, 17]. Notably, a recent study by [18] provides both upper and lower limits

for privacy budgets pertaining to dense graphs generated from the SBM.

2 Preliminaries

2.1 Notation

Edge-subsets. For the remainder of the paper, we assume that G = (V,E(G)) is a graph of n vertices.

For any subset F ⊆
(
V
2

)
, we denote by G4F the graph (V,E(G)4F ). By F ∼p

(
V
2

)
, we mean a subset
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F is taken uniformly from
(
V
2

)
with probability p.

Cuts. For a subset S ⊆ V of vertices, we denote by S the complement set V \ S. Further, given two

subsets A,B ⊆ V with A ∩ B = ∅, let eG(A,B) denote the number of edges of G with one endpoint in

A and one in B. For any two sets of nodes S, S′ ⊆ V , dsize(S, S′) is given by

dsize(S, S′) = min
(
|S4S′|+ |S4S′|, |S4S′|+ |S4S′|

)
.

As |S4T | = |S4T |, we can equivalently write dsize(S, S′) = 2|S4S′|. A cut (S, S) is similar to (S′, S′)

if dsize(S, S′) is small.

Spectral Graph Theory. Any n× n real symmetric matrix A has n real eigenvalues. We denote the

i-th smallest eigenvalue of A as λi(A), i.e. λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A). For any graph G, the Laplacian

matrix LG is given by DG−AG, where DG is the diagonal degree matrix with (DG)ii = degG(i) and AG
is the adjacency matrix of G.

In this work, we define the spectral robustness of the graph G as η(G) := ∆(G)λ2(LG)
λ3(LG)2 , where ∆(G) denotes

the maximum degree of any vertex of G.

2.2 Edge Differential Privacy under Randomized Response

The concept of ε-edge differential privacy is defined as follows.

Definition 2.1 (ε-edge differential privacy [19]). Let G be a social network and let Y be a randomized

mechanism that outputs Y (G) from the social network G. For any ε > 0, any possible output of the

mechanism Y denoted by y, and any two social networks G(1) = (V,E(1)(G)) and G(2) = (V,E(2)(G))

that differ by one edge, we say that Y is ε-edge differentially private if e−ε ≤ Pr[Y (G(1))=y]
Pr[Y (G(2))=y]

≤ eε.

Intuitively, a lower value of ε results in better privacy protection. In this research, for 0 ≤ p ≤ 0.5, we

investigate a randomized mechanism Yp that seeks to generate a result highly similar to spectral clustering

outcomes, using randomized response. The mechanism Yp is defined as Yp = SC◦Fp, where Fp represents

a randomized function that modifies the relationship between each node pair with a probability of p, and

SC is a function for computing spectral clustering. In other words, the randomized mechanism performs

spectral clustering on G∆F , in which (u, v) ∈ F with a probability of p for every u, v ∈ V . The following

theorem is shown in [8].

Theorem 2.1 ([8]). The publication Yp is ε-edge differential privacy if 1−p
p ≤ e

ε.

The previous theorem implies that Yp is ε-edge differential private for ε ≥ ln(1 − p) − ln p. When p is

small, we have that ln(1− p) ≈ 0 and the privacy budget of the publication Yp is Ω(log 1/p).

2.3 Spectral Clustering

For a graph G, the general goal of clustering techniques is to find a good cut (S, S) such that eG(S, S) is

small, and most of the edges of G are either concentrated in S or S. In order to avoid trivial cuts (for

example where S comprises of a single vertex), it is customary to instead define the cut-ratio αG(S) =
eG(S,S)

|S||S| and find cuts that minimize αG(S) [20, 21]. α(G) = min
∅(S(V

αG(S) is defined as the cut-ratio of

G. Unless otherwise specified, we shall denote by S∗ the cut that achieves αG(S∗) = α(G).

Another widely used way of defining the cut-ratio is α′G(S) = eG(S,S)

min(|S|,|S|) [16, 22, 23]. We observe that

these two definitions are related:

Lemma 2.2. 1
2 · nαG(S) ≤ α′G(S) ≤ nαG(S).
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Proof. Observe that n
2 · αG(S) = |S|+|S|

2 · eG(S,S)

|S||S| = 1
2

(
eG(S,S)
|S| + eG(S,S)

|S|

)
≤ α′G(S), and α′G(S) =

αG(S) ·max(|S|, |S|) ≤ n · αG(S).

Lemma 2.2 will be useful in converting results formulated using α′G to those using our cut-ratio αG.

Spectral clustering uses the eigenvalues and eigenvectors of LG to compute a cut of S. Let us denote by

SC2 the following algorithm:

� Compute (or approximate) the second smallest eigenvector ~v = (v1, . . . , vn)ᵀ of LG, and reorder

the vertices of G such that v1 ≤ · · · ≤ vn.

� Return the cut (S, S), where S = {v1, . . . , vi0} and i0 = argmin
1≤i≤n

αG(v1, . . . , vi).

The cut-ratio of G can be quantified very precisely via the famous Cheeger’s inequality.

Lemma 2.3 (Cheeger’s Inequality[24, 25]). λ2(LG) ≤ nα(G) ≤
√

8∆(G)λ2(LG).

We shall also use the following improvement of Lemma 2.3:

Lemma 2.4 (Improved Cheeger Inequality[23]). Let SC2(G) denote the cut given by the spectral clus-

tering algorithm. Then,

αG(SC2(G)) ≤ O

(
λ2(LG)∆(G)

1/2

nλ3(LG)
1/2

)
.

Lemma 2.3 and 2.4 give us a way of quantifying the quality of the cut output by SC2 in terms of the

cut-ratio of G. Indeed,

αG(SC2(G)) ≤ O

(
∆(G)

1/2

λ3(LG)
1/2

)
· α(G). (2.1)

Let S∗ be the cut of G with the smallest cut-ratio. While equation (2.1) can be interpreted as a mea-

sure of how close SC2(G) is with S∗, we shall need stability results from [16, 23] to precisely bound

dsize(SC2(G), S∗).

Lemma 2.5 (Stability of min-cut). Let G = (V,E) be any graph with optimal min-cut S∗. Then, for

any ρ ≥ 1, if S ⊆ V satisfies αG(S) ≤ ρ · αG(S∗), then

dsize(S, S∗) ≤ O
(
λ2(LG)∆(G)1/2

λ3(LG)3/2
· ρ
)
· n.

Proof (sketch). Observe that by Lemma 2.2, αG(S) ≤ ρ · αG(S∗) implies α′G(S) ≤ 2ρ · α′G(S∗). This

lemma then follows from a direct application of Lemma 3.5 of [16].

2.4 Concentration Inequalities

We also require some concentration inequalities for random variables, which we present here.

Lemma 2.6 (Hoeffding’s inequality [26]). Let X1, . . . , Xn be independent random variables such that

ai ≤ Xi ≤ bi almost surely. If S = X1 + · · ·+Xn, then we have

Pr [S ≤ E(S)− t] ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Lemma 2.7 (Chernoff bound for binomial random variables [27]). For a binomial random variable X

with mean µ and t > 0, we have

Pr [X ≥ µ+ t] ≤ exp

(
− t2

2µ+ t

)
.
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Lemma 2.8 (Weyl’s Inequality [28]). For any real symmetric matrices M and H

|λi(M +H)− λi(M)| ≤ ‖H‖2,

Where ‖H‖2 denotes the spectral norm of H.

2.5 Assumptions

In order to demonstrate the robustness of spectral clustering, we require assumptions on the social network

G and the probability p of edge flipping. Recall that F ∼p
(
V
2

)
is the set of vertex pairs to be flipped.

Assumption 2.9. We assume the following:

1. p < log n/10n,

2. (a) ∆(G) ≥ 10 log nλ3(LG), (b) λ2(LG) ≥ 1/10, (c) η(G) := λ2(LG)∆(G)
λ3(LG)2 is small,

(d) λ3(LG) ≥ 10 log n,

3. Let the minimum cuts of G and G4F be (S∗, S∗) and (S∗F , S
∗
F ), respectively. Then

each of |S∗|, |S∗|, |S∗F |, |S∗F | have size at least n/10.

Plausibility of Assumption 2.9:

1. The first assumption can be justified by our discussion in Section 2.2, where we observe that privacy

can be maintained as long as p is Ω(1/n). We further note that, if G is a sparse social network

with O(n) edges and p� log n/n, then as E(|F |) = Ω(n log n), G4F will have too much noise, and

would become close to the Erdős-Rényi random graph F ∼ G(n, p). Spectral algorithms cannot

perform well for these graphs. For example, it is shown in [29] that the eigenvalues of the normalized

Laplacian LF are close to those of the expected values. A quick calculation shows that the second

and third eigenvalues of E(LF ) are both equal (and close to 1), implying the inefficiency of spectral

clustering algorithms on G(n, p) for p asymptotically larger than log n/n.

On the other hand, one may think that values of p larger than log n/n, for example p = Ω(1) is

achievable by the edge flipping mechanism if the input graph G is dense. However, there are two

issues with this: firstly, social networks are not dense in practice. Secondly, we demonstrate in

Section 4, a well-clustered dense graph, whose sparsest cut changes drastically when introducing

noise p = ω(log n/n).

2. The second assumption derives from usual properties of social networks. Recall that we have the

following chain of inequalities on the eigenvalues of LG:

0 = λ1(LG) ≤ λ2(LG) ≤ · · · ≤ λn(LG) < 2∆(G).

This assumption asserts that there are big gaps between λ2(LG), λ3(LG) and ∆(G). First, we note

that most social networks that we encounter in practice, have super-nodes (nodes of degree Ω(n)),

justifying our assumption (a). Further, (b) ensures that G is well-connected: note that disconnected

graphs have λ2(LG) = 0 and graphs that have small edge-separators have a small λ2(LG). Finally,

(c) ensures that there is a gap between λ3(LG) and λ2(LG), which ensures that the graph has a

good bi-cluster structure, which lets SC2 find good clusters in G.

Observe that using inequalities (a), (b) and (c), we can deduce that λ3(LG) = λ2(LG)∆(G)
λ3(LG)η(G) ≥

logn
η(G) ,

which implies our assumption of (d).

3. Our final assumption stems from the fact that usually social networks admit linearly sized clusters,

and also we are usually interested in detecting clusters of larger size via the definition of the cut

ratio α(G), for example.

3 Main Theorem

We restate and prove a formal version of Theorem 1.1 in this section.
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Theorem 3.1. Let G = (V,E) be a graph and p satisfy Assumption 2.9. Let F ∼p
(
V
2

)
. Then, with

probability at least 1− 5n−8/5,

dsize (SC2(G),SC2(G4F )) = O(η(G) · n).

Proof Structure. Suppose S∗ and S∗F are the optimum min-cuts of G and G4F . Denote by S and SF
the outputs of SC2 on G and G4F , respectively.

The key idea is to bound dsize(S, SF ) using triangle inequality:

dsize(S, SF ) ≤ dsize(S, S∗) + dsize(S∗, S∗F ) + dsize(S∗F , SF ). (3.1)

We bound each of the terms in their own subsection below. Observe that by Equations (3.2), (3.6) and

(3.9), we obtain

dsize(S, SF ) ≤ O
(
λ2(LG)∆(G)

λ3(LG)2

)
· n = O(η(G) · n)

with probability at least 1− 4n−21/11 − n−8/5 ≥ 1− 5n−8/5, completing the proof.

In the remainder of this section, we bound each term appearing in the right side of Equation (3.1).

3.1 The term dsize(S, S
∗).

An upper bound on this term is a direct corollary of Cheeger’s inequality and stability: observe that

Lemma 2.5 and (2.1) give us

dsize(S, S∗) ≤ O
(
λ2(LG)∆(G)1/2

λ3(LG)3/2
· ∆(G)1/2

λ3(LG)1/2

)
· n = O

(
λ2(LG)∆(G)

λ3(LG)2

)
· n (3.2)

3.2 The term dsize(S
∗
F , SF ).

First, we describe a lemma to compare the eigenvalues and maximum degrees of G4F and G.

Lemma 3.2. Let G have n vertices, and F ∼ G(n, p). Under Assumption 2.9, with probability at least

1− 3n−21/11, all of the following hold:

(a) λ2(LG4F ) ≤ λ2(LG), (b) λ3(LG4F ) ≥ λ3(LG)/10, (c) ∆(G4F ) ≤ 2∆(G).

Proof. Part (a). By monotonicity of λ2, λ2(LG4F ) ≤ λ2(LG∪F ). As λ2(LG∪F ) ≤ λ2(LG) + λ2(LF\G),

and p < log n/10n, F (and hence F \ G) is almost surely disconnected [30], implying λ2(LF\G) = 0.

Hence, we have λ2(LG4F ) ≤ λ2(LG∪F ) ≤ λ2(LG). �

Part (b). For this part, we shall use Weyl’s Inequality as follows: suppose F1 = F \G and F2 = G∩F be

subgraphs of F on the vertex set V (G). By additivity of the Laplacian, LG4F − LG = LF1 − LF2 . Now

as ‖A‖2 = maxx∈Rn xᵀAx for any symmetric n× n matrix A, which implies

‖LG4F − LG‖2 = max
x∈Rn

|xᵀLF1
x− xᵀLF2

x| ≤ max
x∈Rn

xᵀLFx = λn(LF ) ≤ 2∆(F ).

By the union bound, note that for any v ∈ V (G),

Pr[∆(F ) >
9

2
log n] ≤ n · Pr[degF (v) >

9

2
log n] ≤ n · Pr [degF (v)− p(n− 1) > 4 log n] . (3.3)

Using the Chernoff bound, the probability in (3.3) is at most

n · exp

(
− 16(log n)2

2(n− 1)p+ 4 log n

)
< n · exp

(
−16(log n)2

11
2 log n

)
= n · exp

(
−32

11
log n

)
= n−21/11, (3.4)
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Thus ‖LG4F − LG‖2 ≤ 9 log n holds with probability at least 1 − n−21/11. By Weyl’s inequality and

Assumption 2.9(2),

λ3(LG)− λ3(LG4F ) ≤ 9 log n ≤ 9

10
λ3(LG),

finishing the proof of (b). �

Part (c). Observe that for every vertex v ∈ V (G), we have

degG4F (v)− degG(v) ≤ degF (v) ≤ ∆(F ).

Hence,

Pr
[
degG4F (v) > degG(v) + ∆(G)

]
≤ Pr [∆(F ) > ∆(G)] ≤ Pr [∆(F ) > 10 log n] .

By a similar calculation to (3.3) and (3.4), we conclude that degG4F (v) > degG(v) + ∆(G) holds with

probability at most n−4. Again, by the union bound, with probability at least 1− n−3, we have

degG4F (v) ≤ degG(v) + ∆(G) for all v ∈ V (G). (3.5)

Taking the maximum of (3.5) over all v, we see that (c) holds with probability at least 1− n−3, which is

greater than 1− n−21/11. �

As the assertions of (a), (b), (c) each hold with probability at least 1−n−21/11, all of them simultaneously

hold with probability at least 1− 3n−21/11, completing our proof of Lemma 3.2.

Now, observe that by the same argument as (3.2) in addition with Lemma 3.2, we get that with probability

at least 1− 3n−21/11,

dsize(S∗F , SF ) ≤ O
(
λ2(LG4F )∆(G4F )

λ3(LG4F )2

)
· n = O

(
λ2(LG)∆(G)

λ3(LG)2

)
· n (3.6)

3.3 The term dsize(S
∗, S∗

F ).

For the remainder of this section, let γ0 be given by

γ0 := 200
√

∆(G)/λ3(LG) > 200
√

10 log n.

In order to bound dsize(S∗, S∗F ), we require the following rather technical lemma.

Lemma 3.3. Let S∗ denote the minimum cut of G and S∗F denote the minimum cut of G4F . Suppose

n/2 ≥ |S∗|, |S∗F | ≥ εn for some 1/2 > ε > 0. Further, suppose αG(S∗F ) ≥ γ0αG(S∗). Then,

Pr (γ0αG4F (S∗F )− αG4F (S∗) < 0) < exp

(
−

4
(
γ2

0 − 1
)2

25γ2
0

· αG(S∗)2ε2n2

)
. (3.7)

As the proof is involved, we defer it to the end of this section.

First, we demonstrate the bound on dsize(S∗, S∗F ) using Lemma 3.3. We consider two cases:

� Case 1. αG(S∗F ) ≤ γ0αG(S∗): In this case, Lemma 2.5 directly gives us

dsize(S∗, S∗F ) ≤ O
(
γ0λ2(LG)∆(G)1/2

λ3(LG)3/2

)
· n = O

(
λ2(LG)∆(G)

λ3(LG)2

)
· n.

� Case 2. αG(S∗F ) > γ0αG(S∗): In this case, setting ε = 1/10 in Lemma 3.3, we note that the

probability that αG4F (S∗) > γ0αG4F (S∗F ) is at most:

exp

(
− (2γ2

0 − 2)2αG(S∗)2n2

2500γ2
0

)
< exp

(
− γ2

0

2500
· (αG(S∗) · n)2

)
Cheeger
< exp

(
−160 log n · λ2(LG)2

)
< exp

(
−160 log n · 1

100

)
= n−8/5
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The last line follows from Assumption 2.9(2). Hence, with probability at least 1−n−8/5, αG4F (S∗) ≤
γ0αG4F (S∗F ) holds. By Lemma 2.5, this implies

dsize(S∗, S∗F ) ≤ O
(
γ0λ2(LG4F )∆(G4F )1/2

λ3(LG4F )3/2

)
· n.

Together with Lemma 3.2, we obtain that with probability at least 1− n−8/5 − 3n−21/11,

dsize(S∗, S∗F ) ≤ O
(

∆(G)1/2

λ3(LG)1/2
· λ2(LG4F )∆(G4F )1/2

λ3(LG4F )3/2

)
· n (3.8)

= O

(
λ2(LG)∆(G)

λ3(LG)2

)
· n, (3.9)

finishing our upper bound on dsize(S∗, S∗F ). �

We now present our proof of Lemma 3.3.

Proof of Lemma 3.3. The main idea behind the proof is as follows: first, we show that Lemma 3.3 holds

with S∗F replaced with any fixed subset A. Then, we use the fact that

Pr (γ0αG4F (S∗F ) < αG∆F (S∗))

= Pr (γ0αG4F (S∗F ) < αG4F (S∗) | αG(S∗F ) > γ0αG(S∗))

=
∑

A:αG(A)>γ0αG(S∗)

Pr(S∗F = A) · Pr (γ0αG4F (S∗F ) < αG4F (S∗) | S∗F = A)

≤ max
A:αG(A)>γ0αG(S∗)

Pr (γ0αG4F (A) < αG4F (S∗)) ,

(3.10)

as
∑
A Pr(S∗F = A) = 1.

Now, we bound Pr (γ0αG4F (A) < αG4F (S∗)) for any fixed A.

Claim 3.4. Let S∗ denote the minimum cut of G. Suppose n
2 ≥ |S

∗| ≥ εn for some 1
2 > ε > 0. Then,

for any γ > 1 and n
2 ≥ |A| ≥ εn,

Pr (γαG4F (A)− αG4F (S∗) < 0) < exp

(
−4 (γαG(A)− αG(S∗))

2

25γ2
· ε2n2

)
. (3.11)

Proof of Claim 3.4. Let YA := γαG4F (A) − αG4F (S∗). We wish to show that YA ≥ 0 with high

probability.

For any tuple (x, y) ∈ V × V , define X(x,y) as the boolean random variable

X(x,y) =

{
1, if xy ∈ E(G4F ),

0, otherwise.

As X(x,y) = X(y,x), we abuse notation and write Xxy as a shorthand for both these variables. Note that

Xxy are all mutually independent, and

E(X(x,y)) = Pr(xy ∈ E(G4F )) =

{
p, if e 6∈ E(G),

1− p, if e ∈ E(G).
(3.12)

Further, for any subset A ⊆ V , by definition

αG4F (A) =
eG4F (A,A)

|A||A|
=

1

|A||A|
·

∑
(x,y)∈A×A

X(x,y),
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Which, by (3.12), implies

E(αG4F (A)) =
1

|A||A|
·

 ∑
e∈EG(A,A)

E(Xe) +
∑

e∈A×A\EG(A,A)

E(Xe)


=

1

|A||A|
·
(
eG(A,A) · (1− p) + |A||A| · p− eG(A,A) · p

)
=

1

|A||A|
·
(
eG(A,A) · (1− 2p) + |A||A| · p

)
= (1− 2p) · αG(A) + p.

(3.13)

Let µ denote the expectation of YA. By linearity and (3.13),

µ = E(YA) = (1− 2p) · (γαG(A)− αG(S∗)) + p · (γ − 1)

>
4

5
· (γαG(A)− αG(S∗)) ,

(3.14)

As γ > 1 and p < 1/10. We also have µ > 0, and Pr(YA < 0) = Pr(YA − µ < −µ). Now we shall use

Hoeffding’s inequality to provide an upper bound on Pr(YA < 0). To that end, YA has to be rewritten as

a sum of independent random variables. However,

YA =
γ

|A||A|
·
∑

e∈A×A

Xe −
1

|S∗||S∗|
·
∑

e∈S∗×S∗

Xe. (3.15)

As the two summations in YA have overlapping terms, we separate them as follows. Let Z1 = S∗ \ A,

Z2 = S∗ ∩A, Z3 = A \ S∗, Z4 = S∗ ∪A. Observe then,

S∗ × S∗ = (Z1 × Z3) t (Z1 × Z4) t (Z2 × Z3) t (Z2 × Z4)

A×A = (Z3 × Z1) t (Z3 × Z4) t (Z2 × Z1) t (Z2 × Z4)
(3.16)

This lets us break each sum in (3.15) into four parts, and using X(x,y) = X(y,x), we can write Y as

YA =
∑

e∈(Z1×Z3)t(Z2×Z4)

(
γ

|A||A|
− 1

|S∗||S∗|

)
Xe +

∑
e∈(Z1×Z4)t(Z2×Z3)

γXe

|A||A|

−
∑

e∈(Z3×Z4)t(Z1×Z2)

Xe

|S∗||S∗|
.

(3.17)

Note that all summands in (3.17) are independent of each other. For simplicity, let us denote zi := |Zi|
for i = 1, . . . , 4.

Since −|c| ≤ cXe ≤ |c| for any constant c ∈ R, we can use Hoeffding’s inequality to get Pr(Y < 0) =

Pr(YA − µ < −µ) ≤ exp(− 2µ2

D ), with

D = 4(z1z3 + z2z4)

(
γ

(z2 + z3)(z1 + z4)
− 1

(z1 + z2)(z3 + z4)

)2

+
4γ2(z1z4 + z2z3)

(z2 + z3)2(z1 + z4)2

+
4(z3z4 + z1z2)

(z1 + z2)2(z3 + z4)2
,

which, after some calculations, leads to

D =
4γ2(z1 + z2)(z3 + z4)

(z2 + z3)2(z1 + z4)2
+

4(z2 + z3)(z1 + z4)

(z1 + z2)2(z3 + z4)2
− 8γ(z1z3 + z2z4)

(z1 + z2)(z3 + z4)(z2 + z3)(z1 + z4)
(3.18)

< 4γ2

(
(z1 + z2)(z3 + z4)

(z2 + z3)2(z1 + z4)2
+

(z2 + z3)(z1 + z4)

(z1 + z2)2(z3 + z4)2

)
(3.19)

= 4γ2

(
|S∗||S∗|
|A|2|A|2

+
|A||A|
|S∗|2|S∗|2

)
≤ 4γ2 · 2 · n

2/4

ε2n4/4
=

8γ2

ε2n2
. (3.20)
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Here (3.20) follows from the fact that n2/4 ≥ |S∗||S∗|, |A||A| ≥ εn · n/2. Therefore, in conjunction with

(3.14), we obtain

Pr(YA < 0) ≤ exp

(
−2µ2

D

)
< exp

(
−4 (γαG(A)− αG(S∗))

2

25γ2
· ε2n2

)
,

as desired. �

Now we return to our proof of Lemma 3.3. For any set A ⊆ V with n
2 ≥ |A| ≥ εn and αG(A) > γ0αG(S∗),

we have

Pr(γ0αG4F (A) < αG4F (S∗)) < exp

(
−4 (γ0αG(A)− αG(S∗))

2

25γ2
0

· ε2n2

)

≤ exp

(
−

4
(
γ2

0 − 1
)2

25γ2
0

· αG(S∗)2ε2n2

)
,

Which, when plugged back into Equation (3.10), gives our desired bound.

4 Instability of spectral clustering when p = ω(log n/n)

We now construct a dense graph G whose sparsest cut drastically changes under edge flipping with

p = ω(log n/n).

Let δ > 0 be a small constant, and p = ω(log n/n). Consider a graph G on (1 + δ)n vertices with vertex

set A ∪B ∪ C, where |A| = δn, |B| = |C| = n/2. Add all
(|A|

2

)
edges in A and

(|C|
2

)
edges in C. Finally,

add B–B and B–C edges each with probability log n/n, and A–B and A–C edges each with probability

1/10n. A visual representation of this construction is shown in Figure 4.1.

K|A|

|A| = δn

prob. log n/n

|B| = n/2

K|C|

|C| = n/2

prob. log n/n

prob. 1/10n

prob. 1/10n

Figure 4.1: The (dense) graph G

It can be seen that for G, the cut (A,B ∪ C) is the sparsest with high probability, as αG(A) ≈ 1
10n .

However, if G′ is the graph obtained from G after edge flipping with probability p = ω(log n/n), then in

G′, the sets A and C only become slightly less dense, and every A–B, B–B, B–C and A–C edge exists

with probability p− o(1). Hence, while A and C would be on different parts of the sparsest cut, any cut

(A ∪B′, B −B′ ∪ C) with B′ ⊆ B would attain the minimum cut-ratio of p, and spectral clustering will

choose a cut different from (A,B ∪ C) since it would be unbalanced due to small δ. In particular, this

implies the instability of spectral clustering on G′, and leads to large dsize(SC2(G),SC2(G′)) with high

probability.

5 Experiments

We conduct experiments on real social networks to verify our theoretical results. In this work, we mainly

use the network called “Social circles: Facebook” obtained from the Stanford network analysis project
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(SNAP) [31]. To satisfy Assumption 2.9 (3), which assumes that the minimum cut size is large, we

eliminate all node sets that have at most 10 outgoing edges.

We examine the graphs defined in the files ”0.edges” and ”1609.edges.” After removing nodes of small

degree, there are n = 120 left in the first graph and n = 574 left in the second. As illustrated in Figure

5.1a and 5.1b, the social network is composed of two clusters, both of which are quite sizable. This graph

possesses the attributes necessary for Assumption 2.9.

(a) (b)

(c)

Figure 5.1: (a) and (b): The social networks we utilized in our experiment were obtained from SNAP.

Each node was assigned a color based on the spectral clustering outcomes. (c): We generated 100 graphs

from graph (a) and calculated the discrepancy dsize between the outputs of the spectral clustering of the

original and perturbed graphs.

Our main theorem ensures that the clustering outcomes remain mostly consistent when edges are flipped

with a probability p < logn
10n . The upper bound is about 0.004 for the first graph and about 0.001 in

the second. We examine p ∈ {0.0001q : 1 ≤ q ≤ 50}. For each probability p and graph, we create 100

random graphs F with the given probability. Note that the original graph is represented by G. We then

compute the difference between the clustering results of G (represented by SC2(G)) and that of G4F
(represented by SC2(G4F )).

The chart in Figure 5.1c shows the result we obtain from the first graph. The chart demonstrates the

difference between the clustering outputs, represented as dsize(SC2(G),SC2(G4F )), derived from the 100

random graphs for each probability. This illustration reveals that, across all considered probabilities, the

clustering outcomes remain consistent in every random graph. In each instance, when comparing the

original graph to the graph with flipped edges, a minimum of 116 nodes are assigned to the same clusters.

Only a maximum of four nodes out of 120 experience a change in their cluster placement.

For the second graph, the result is even more robust. For all the probabilities we have conducted the

experiment, there were no change in the clustering results by the edge flipping. These two experiments
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suggest that the clustering results exhibit strong resilience to edge flipping.

6 Concluding Remarks

In this manuscript, we demonstrate and empirically verify that under some assumptions, the spectral

clustering algorithm is robust under the randomized response method. While our primary objective is its

use in local differential privacy, our validation also confirms the robustness of spectral clustering against

social networks containing inaccurate adjacency information.

We demonstrate that the outcomes are robust when p < log n/10n, but also acknowledge that the

results can undergo significant alterations for larger p values. This occurs because randomized response

introduces an excessive number of edges to the graph in such cases. We are aiming to examine the

robustness of other local differential privacy approaches (e.g., as in [32]) that do not add as many edges

as the randomized response method. Our results are for the case that we output two clusters from the

input graph, but we believe that extending the result to k clusters would be interesting future work.
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